4、部分熱泵新技術簡介
熱泵新技術研究主要是圍繞提高熱泵系統的熱力學效率、提高熱泵系統的環境友善程度和處理空氣品質等方面展開的。部分技術已經應用于相關產品及系統中。相關新技術主要包括:
①室外側換熱器結霜控制、表面納米材料及其表面修飾工藝技術
通過對室外側換熱器的外表面進行納米材料修飾,使得霜水呈球狀凝結,從而減小凝霜或凝水在換熱器外表面凍結的機會。
②大壓差、非穩定運行條件下高效熱泵壓縮機技術
主要包括渦旋壓縮機柔性導入結構、機體噴液降溫及吸排氣壓力自我辨識和自適應分液調節技術,從而適應大壓差、非穩定運行條件。
③熱泵自適應空況控制技術
根據熱泵系統熱動力運行特性,確定系統的自我狀況診斷和自適應空況調節控制。從該項技術在ASHP系統中應用效果看,能夠明顯提高系統的SEER指標。配合新的流程[11],該項技術在保證ASHP系統低溫環境條件下的有效供熱方面,效果明顯。
④納米填料靜音技術
通過納米材料及微納米填料,消除工質在節流過程、冷凝過程及蒸發過程中由于相變而導致相界間能量傳遞產生的噪聲和振動。
⑤可吸入顆粒物納米催化及分解技術
通過在熱泵與空調系統空氣處理末端進、出風界面上進行綱伙材料修飾,使空氣中的可吸入顆粒物經過納米催化分解而使空氣得以凈化。
⑥全空氣熱泵技術
采用濕空氣的跨臨界膨脹的熱力循環的全空氣熱泵空調系統。空氣同時作為工作介質和能量交換介質。采用無油壓縮設備及工藝技術,將使得此系統有著極好的環境友善性能。
⑦納米催化高效吸收技術
利用具有均勻性網絡結構的低密度多孔性納米材料作為吸收器和發生器的填料,可以提高吸收效率和發生效率及速率,從而使得吸收時制冷機或吸收式熱泵機組的小型化稱為可能。以三氯化鐵和氫氧化鈉為原料,利用溶膠-凝膠過程和超臨界干燥技術,經過鐵基氣溶膠基本粒子b-FeOOH,再經高溫處理后轉化為a-Fe2O3-SiO2為基質的低密度多孔性納米材料是一種可能的納米催化高效吸收填料。
⑧高效率、低污染燃燒技術
燃燒器表面經過鈦基納米粒子修飾后,在納米粒子的催化作用,可以對燃燒反應條件進行控制和調節,從而使天然氣的燃燒更快、更充分,與此同時,抑制氮氧之間的反應,從而使燃燒反應中間產物(及污染物)減少,提高燃燒效率。
⑨熱泵壓縮機柔性吸、排氣靜音技術
壓縮機式制冷或熱泵系統噪聲與振動的主要源泉。壓縮機吸、排氣環節所產生的噪聲頻率特性以其結構及材料不同而不同。實驗證明,采用柔性吸、排氣通道結構,可以減少制冷或熱泵機組噪聲,并改善它在系統中的傳輸特性。
⑩往復式壓縮機吸氣回流增阻技術等。
對于往復式壓縮機來說,在壓縮機吸氣側的工質回流是造成壓縮機吸氣側腔內工質壓力脈動的主要因素之一,由它產生的氣流脈動可以從低壓側傳輸到高壓側。采用回流增阻結構的吸氣通道,可以降低壓縮機產生的噪聲及振動,并使壓縮機的效率有所提高。
(11)礦物油極性強化技術
礦物油極性較弱,與同樣弱極性的CFCS類工作介質相溶性良好,是工質替代問題出現之前應用廣泛的制冷系統用潤滑油。作為CFCS類工質的的主要替代物,HFCS類工質的化學極性較強,因而需要使用具有較強極性的潤滑油(如POE油),由此帶來許多問題。礦物油極性強化技術使之用于采用HFCS類工質(及以HFCS類工質為主要成分的混合類工質)的制冷系統成為可能。
免責聲明: 本文僅代表作者個人觀點,與 綠色節能環保網 無關。其原創性以及文中陳述文字和內容未經本站證實, 對本文以及其中全部或者部分內容、文字的真實性、完整性、及時性本站不作任何保證或承諾,請讀者僅 作參考,并請自行核實相關內容。