一、簡介
隨著電子技術的突飛猛進,流量測量系統所使用的差壓變送器、流量積算儀等二次儀表的精度、靈敏度都發生了質的變化,達到了極高的水平。但是,幾十年來流量測量系統一次源的檢測水平沒有重大的突破,成了制約差壓式流量測量系統發展的瓶頸,使得高水平的下游儀表無法發揮出應有的高效率。
進入九十年代,流量測量領域出現了全新威力巴流量探頭:威力巴流量裝置,使得一次源的測量精度、重復性和可靠性達到一個嶄新高度。
威力巴流量裝置、差壓變送器加上積算儀等二次儀表,以及其它外圍輔助連接部件,構成了當年世界高水平的差壓流量測量系統
二、測量原理
威力巴流量計采用一種差壓式的流量探頭,其計算模型和其他差壓式流量計(如孔板流量計[7~8])的數學模型相同。威力巴流量計的工作原理見圖1。其計算模型為:
式中qm——質量流量,kg/h
K——流量常量
ρ——介質工況密度,kg/m3
△p——探頭前后的差壓(即圖1中高壓區與低壓區的差壓),kPa
△p的準確測量不應只限選用一臺高精度的差壓變送器,實際上差壓變送器能否接收到真實的差壓還取決于一系列因素,其中探頭的正確選型及探頭、引壓管的正確安裝和使用,都是保證獲得真實差壓值的關鍵。
三、測量特點
高強度結構:威力巴流量計采用一體化雙腔不銹剛耐磨防腐全金屬結構,避免了其它類型均速管流量計多片式結構帶來的腔室間滲漏和斷裂,提高了傳感器整體強度,降低了傳感器斷裂的可能性,保證了長期精度并有助于提高傳感器的測量量程上限。
多點取壓方式:威力巴流量傳感器在高、低壓區有按一定準則排布的多對取壓孔,取壓孔的間距經面積積分確定,能真實的檢測到由流體的平均速度所產生的平均差壓;即使直管段不夠或流體波動較大時,也能較精確測得真實的流量。
特殊截面形狀:威力巴流量探頭采用特殊工藝制造的特殊截面形狀所受到的牽引力最小,能夠產生精確的壓力分布,使流體與傳感器的分離點固定。
前表面粗糙面處理:威力巴流量探頭前面金屬的表面,進行了粗糙化處理,根據空氣動力學原理,流體流過粗糙表面,形成一個穩定的紊流邊界層,有利于提高低流速狀態的測量精度,使得流體在低流速時,探頭仍可獲得穩定精確的差壓信號,從而延伸了傳感器的測量量程下限,保持流量系數的穩定。
本質防堵設計:威力巴流量高、低壓取壓孔位置的本質防堵設計使均速管流量計的防堵水平達到了一個嶄新局面。
威力巴流量計剛投入運行時,流體在管道靜壓的作用下,開始進入探頭前部(迎流方向)的高壓取壓孔內腔,猶如帶頸的瓶子放入水池灌滿水一樣,很快形成了壓力平衡狀態,在探頭前部產生了一個高壓分布區,流體及其中的顆粒雜質遇到高壓區不再進入高壓取壓孔,而是繞道而行朝探頭的兩邊分流漸開離去,在探頭的后部形成一種渦流,一般情況下,顆粒雜質在渦街牽引力的作用下,集中在探頭的后部,正如落葉總是落在背風處一樣,由于低壓取壓孔在探頭的側后兩邊、流體分離點和雜質聚集區的前部,從而本質上防止了堵塞和渦流的信號波動,并由此產生一個非常穩定的低壓信號。
四、應用介質:
威力巴流量傳感器的使用范圍及其廣泛,它大量用于各種氣體、液體和蒸汽的測量,以下為典型應用介質:
1、氣體/液體/蒸汽;
2、天然氣/冷卻水/飽和蒸汽;
3、壓縮空氣/鍋爐水/過熱蒸汽;
4、燃氣/除鹽水;
5、氣體碳氫化合物/液體碳氫化合物;
6、熱空氣/低溫液體;
7、發生爐氣體/導熱液體